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Investigations into the performance capabilities and behaviour of complex
systems (for example a servo system) are generally not easily carried out in
the form of an analytical study because the calculations involved may be
extremely laborious, and the characteristics of the component parts of the
system, such as non-linearities may not readily lend themselves to solution by
simple mathematical methods. In these cases it 1s usual to resort to some
method of simulation to facilitate study of the system characteristics of interest.
This article compares the relative merits of analogue and digital computer
stmulation and gives examples of the use of each.

Definition of Simulation

In order to perform a simulation of the behaviour of a system* it is
necessary to have a model of that system which reflects its essential
properties, and which is amenable to experiments that would be impossible,
impractical, or too costly to perform on the actual system.

Simulation is the operation and exploration of a model with the purpose
of obtaining insight into the behaviour of the system under consideration.

Introduction and Background

»

The main purpose of this article is to compare the utilities of electronic
digital computer simulations and electronic analogue computer simulations.
Simulation, in the widest sense of the word has been a pastime of mankind
since the dawn of civilisation, and whilst it is our main aim to discuss only

* A system is an organized or self-organizing sét of purposive, possibly abstract, compon-
ents which interact one with another, and possibly as a whole with the system’s environment.
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simulation by domputer we will mention a few examples from outside this
limited field when it is expedient.

Early work in the field of analogue computation was carried out by
Lord Kelvin during the latter part of the 19th century when he attempted
to solve a second-order differential equation by using a mechanical method
of integration. The basis of the mechanical integrator he employed is
illustrated in Fig. 1; it can be seen that the variable quantities are dis-
placements, either linear or rotational, of different parts of the mechanism.
The sum or difference of two shaft displacements may be evaluated with
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the aid of a differential gearbox and this device was also put into use by
Lord Kelvin in attempting to solve his problem. Consider the second-order
differential equation for simple harmonic motion,

dyldt® +y = 0 ie. d?%y/di? = —y.

If a displacement representing d%y/d¢? is applied as an input to a mechanical
integrator, the output displacement is proportional to dy/dt; if this is now
connected to a second integrator stage the resulting output is proportional
to y. A sign reversal, in this case a reversal of direction of movement gives
—y. This represents the right-hand side of the equation to be solved.
Kelvin’s original work attempted the solution by continually updating
the input, in an attempt to make it equal to the output from the system
obtained from the preceding input. Tt was not for some time that he
realised the equation could be continuously solved by having a direct
mechanical connection between input and output, because this compels
d?y|dt® to equal minus y.

Kelvin was unsuccessful in producing a solution in this way becaudse of
the frictional problems and lack of torque associated with the mechanisms
he was employing, despite modifications which were made to the mecha-
nism of the integrator by his brother George Thompson in an attempt to
overcome the difficulties.

The idea of closing a loop in the.manner conceived by Kelvin is funda-
mental to many analogue and digital computer simulations.



SYSTEM SIMULATIONS BY COMPUTERS 135

At about the same time Charles Babbage was designing a machine to
evaluate mathematical tables by successive difference methods. This device,
which employed different sizes of toothed wheels to perform additions and
subtractions, was an elementary mechanical digital computer, and within
its limited capabilities was-a satisfactory, but slow, method of automatic
calculation.

The main impetus to the field of analogue and digital computation was
obtained from the military requirements of the Second World War. The
United States Army required gunnery tables and attempts were made to
produce them by simulating ballistic trajectories with the aid of the
mechanical differential analyser. This contained sophisticated versions of
the mechanical integrators employed by Lord Kelvin which were able to
work satisfactorily under closed-loop conditions. However, there were
disadvantages, the principal ones being its slowness and noise-corrupted
results, and consequently the Army planned to supersede it with an all
electronic sequence-controlled computer, the ENIAC.

The ENTAC was not completed until 1946, too late for the war, and so was
used for a variety of other tasks including work on the H-bomb. The
ENIAC, being the first computer of its kind, had a number of deficiencies,
particularly its small store and its clumsy programming by plug boards.
EN1AC did, however, demonstrate that it was possible to assemble usefully
very complex equipment (Ex1ac had 20,000 valves and required a 200 kW
power supply), and spurred Johnny von Neumann and his collaborators to
design the first stored program digital computer, the Epvac.’ The
EDvAC had its internal logical structure specified in terms of the Mc-
Culloch-Pitts neuron—a “theoretical”’ neuron that was postulated in a
famous analysis of brain function.® One can thus rather loosely say that
the electronic digital computer derives from a simulation of the brain.

The introduction of the general-purpose high-speed digital computer
had a deleterious effect on mechanical methods of computation and they
never recovered. In parallel with the work on ENTAC, Norbert Wiener, the
father of cybernetics, was working on the problem of producing automatic
fire-control predictors for anti-aircraft batteries, and it is from these
devices that the modern electronic analogue computers are derived.

Simulation provides a means for extending the realm of experimentation,
and facilitates exploration of the performance of an engineering system
without having the hardware available. It enables ideas to be tested
which may result in catastrophic failures or incur great expense if tested
on the real system. Any system may be simulated providing the physical
and mathematical laws governing the behaviour of its component parts
are understood ; of course simulation can be abused, and may produce bad
predictions if care is not taken to ensure that all the relevant physical
laws and dependencies are taken into consideration. Indeed simulation,

2
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as a techniquf, is probably most useful when it is used to analyse the
performance of a system which consists of many “well understood’’ parts
which interact in a complicated manner. Basically simulation enables one
to explore the question “What would be the result of . ... in a manner
which is often cheaper than experimenting on the actual system, if it
already exists.

Scope of Simulation

Analogue simulation as a field includes scale model testing such as
wind-tunnel experiments on models of high velocity projectiles, or the
determination of a ship’s hull stability characteristics from models in
large water tanks. An early example of this was the use of the orrery,
which consisted of a model of the solar system, with the principal bodies
mounted on arms which were driven by a complicated gearing arrange-
ment, and which was used to predict eclipses. A further example derives
from wartime research and involved testing Barnes Wallis’s ingenious idea
of a bouncing bomb ; the bomb’s feasibility was initially tested by launching
marbles on to the water surface of a butt in his garden, and later on a
grander scale in the water tanks at the Hydraulic Research Station at
Teddington. However, we will confine ourselves to the consideration of
simulation on devices that have been constructed specifically for the
solution of mathematically defined problems, and which operate on
principles which are in general independent of the physical nature of the
problem. Such devices go back at least as far as 1876 when Lord Kelvin
designed and built a tide predictor that was based upon his mechanical
integrator.

Digital simulation has been utilized extensively since 1944 when it was
used in the development of the atomic bomb, and has developed into a
large and profitable pastime. The colourful term “Monte-Carlo method”
stems from 1944 and is often applied to a digital simulation which depends
upon stochastic information. This represents a departure from its original
meaning ; formerly it was the code name given by Johnny von Neumann
to a particular technique used in solving the neutron transport equations
for the Manhattan project to build an atomic bomb, however this different
meaning seems to have become almost universally accepted.

In the early days of the “super” (hydrogen bomb) project, research
effort was directed at the approach advocated by Edward Teller. Stan
Ulam and Johnny von Neumann had the task to independently simulate
the reaction. However, both simulations demonstrated that the proposed
device was not feasible and it was thus abandoned. Later Stan Ulam
conceived the idea which was to form the basis of the “super” and the
efficacy of his scheme was verified by further simulations.
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Nowadays the Meteorological Office’s computers simulate the genesis
and subsequent motion of the barotropic vortices of the earth’s atmos-
phere, and the resulting information is used to produce weather forecasts.
which are of great economic and social benefit to the community. Multi-
sector mathematical models of the economy have been constructed and
refined for the past forty years and the more realistic of these are used by
government advisers to simulate the effects, and determine the most
expedient, of various policies that have been designed to steer the economy
towards a particular goal, usually in the shortest possible time. The Road
Research Laboratory has utilized computer simulation in its analysis of
different types of road intersections and traffic light strategies, in an effort
to increase traffic flow. The effect on the tidal flow of the River Thames of
the Maplin project (to build an airport, dock and industrial complex off
Foulness in the estuary) and the proposed Thames barrage has been
simulated by both digital and analogue methods.

There are many other instances where simulation has been profitably
applied such as in geophysics, astro-physics, mathematical biology,
oceanography, nuclear reactor design, hydrodynamics, communications
engineering, and the Apollo and Concorde projects probably could not
have functioned wivhout it. Further examples occur in war-gaming and
business-gaming where an individual tests his abilities and strategies
against simulated adversaries, and also in “world dynamics™ where the
effects on the earth’s future ecological stability, of such things as a reduc-
tion in the birthrate in 1980 say, or the discovery of a new pollution free
fuel, or the avallablhty of an inexhaustible supply of food are simulated.
Indeed it is difficult to imagine that our present society could exist without
the tremendous assistance that is derived from these simulations, which
are generally only possible with the availability of digital computers.
Possible future applications are in the fields of genetic and molecular
engineering where, for example, it would be desirable to simulate the
effects of possible changes in the structure of DNA, or determine the
characteristics of a new chemical compound.

The tremendous demand for digital computer simulations has made it
essential for “high level” simulation languages to be implemented on
digital computers. Instances of these languages are csme (Continuous
System Modelling Program), svaNe (Simulation Language), PANSY
(Program for the Analysis of Non-linear Systems), spapE (Simulation
Program for the Analysis of Differential Equations) and mopsim (Modu-
lated System Simulation). SPADE (See Appendix 1) and MopsiM are the
languages that are used by the Marconi Company on its ICL System 4-70
and were developed by the Mathematical Physics Group of the GEC-
Marconi Electronics Research Laborataries. All of these languages enable a
user to specify in a simple form the system which he wishes to analyse, and
the range of conditions over which he desires the simulation.
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Fundamentals of Digital Simulation

In order to implement any task on a digital computer it is necessary to
define the task in terms of an available computer language such as
FORTRAN or ALGOL. It was found that simulation tasks were often only
clumsily programmed in terms of these languages, and so special simu-
lation languages and programs evolved and have become the basic
entities for digital simulation of complex dynamical systems. These
languages allow the user to specify his problem in a simulation-polarized
manner; that is in terms of “built-in” idealised abstract bulldmg -blocks
such as integrators, summers, limiters and the like which oceur in “non-
ideal” form in practice. An example is the sPADE language, which was
developed within the Marconi Company, and which allows fairly general
rorTRAN-like statements to be written in the definition of the problem;
SPADE has all the usual ForTRAN functions available, as well as a selection
of logical operators, the “standard” non-linearities and a selection of
other “black boxes’ (see Appendix 1).

Most digital simulations of dynamical phenomena rely on the ability of
the computer to integrate numerically possibly large sets of simultaneous
differential equations. These may be characterized by the vector differential
equation:

y' = f(y.t) with y(0) = y,, (1)

which may be solved numerically by a variety of different methods. The
most elementary numerical method for solving equation (1) is to use the
approximation:

¥ni1 = ¥n +Atf(Yn’ ’H,At),
which is an application of the elementary approximation:
y+Ay = y+(dyldz) Az.

Generally the numerical solution of equation (1) is quite straight-forward,
however, there exists a number of pitfalls to trap the unwary which we will
not go into here. It is to combat these that some highly sophisticated
techniques have been designed in recent years. As one might expect the
most efficient (fastest) technique varies from problem to problem and it is
because of this characteristic that a spectrum of techniques is usually made
available within a simulation program.

The power of a digital simulation program is really only limited by the
size of the computer on which it is implemented. For example, on the
Marconi 4-70, sPADE could in theory handle up to the order of 10,000
simultaneous differential equations, though it is doubtful that the simula-
tion would be completed in a sensible time. Roughly the time to simulate
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on a digital computer goes up linearly with the number of integrations,
whereas it remains constant on an analogue computer.

Within the Marconi Company there exists a further simulation program,
moDpsiM which is used for simulating communications systems, mainly in
the frequency domain, by utilizing the Fast Fourier Transform*. This
program evolved from a “Monte Carlo” simulation of a multi-channel
telephone link, and is used to great effect for the prediction of the perform-
ances of communications systems.

It is possible to use mMopsIM to simulate the steady-state periodic
behaviour of non-linear systems (see Appendix 2). The technique used has
proved to be a very fast and accurate means of obtaining results from
mildly non-linear systems, such as transistor amplifiers® and phaselock

loops. e
F’L'g. 2. Ve IV

Fundamentals of Electronic Analogue Simulation =

-]

The analogue computer has one basic unit which may be adapted to
provide a number of different characteristics. The basic unit is a high gain
d.c. amplifier. The essential qualities of the amplifier are (i) a high voltage
gain of the order of 105, (ii) a high input impedance (greater than 10MQ),
(iii) a low output impedance (a few tens of ohms), (iv) a low drift rate or
d.c. offset (to achieve this, chopper stabilised amplifiers are often used) and
(v) & wide bandwidth, since this will impose a restriction on the maximum
operating frequency of the computer system.

Diagrammatically the amplifier may be represented as Fig. 2.

Since the amplifier has a very high gain represented by G the input
voltage V', will tend to zero for all values of ¥, within the linear operating
region, i.e. the amplifier input is a virtual earth. The amplifier also provides
a polarity reversal (inversion) between input and output. Consider the
amplifier connected as shown in Fig. 3. If the input impedance is very
high no effective current will flow into the amplifier, and Ohm’s law gives:

(Vin=Ve)Bin = (Vo—Vy)/R;. (2)
Also: R
Vo= -6V, Fig. 3. Rin
ie. Vinl Vet _,_i:"
V.= —V,/G. = .

* The Fast Fourier Transform is a highly efficient technique for calculating the Diserete
Fourier Transform
@ = (1/N}) 21::1 o™ X, where o = exp (j2=/N}
and =e
m=0,1,2... (N=1),

when N is composite (that is decomposable into a large number of integer factors.)
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Substitutiﬁ% in equation (2) gives:
[Vin+(Vo/@]/[ By = —[(Vo/G)+ V)R,

Vin[Ryy = —{Vo[Be+ Vo[ (GR;) + Vo [(GRy,)}.
If @ is very large:

Vin/Rin ~ = VO/Rﬁ
that is: ’
VO/Vin = _RffRin-

Providing the input impedance and the gain of the amplifier are very
high, the voltage gain of the arrangement in Fig. 3 is given by the ratio of
the feedback and input resistor values.

Ry
.. o
| 'f
. Vy Ra 5 Rin
Fig. 4. Ry ) Fig. 4.
Vv, V. v,
¥ T I'vo in I a
R =

By similar argument, for a number of input resistors as shown in Fig. 4
it can be shown that

—Vo = V1B/Ry + VyRs/ Ry + V3 R/ R,
When all resistor values are equal the arrangement provides a voltage
summing device, i.e.,
—Vo=Vi+Vo+ 7V,
Consider the case where the feedback resistor R; is replaced by a capacitor -

C as in Fig. 5.
Assuming infinite amplifier gain and input impedance :

Vin/Rin = —i
and since the amplifier input is a virtual earth:
iy = C(dV,/di),
or
Vial Ry = —C(dV/dt),
or

Vo = —(CRy) [V ydt.

Thus the output voltage is directly proportional to the time integral of the
input voltage.
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These two amplifier configurations, Figs. 4 and 5, are the basic building
blocks of all electronic analogue computer models.

It can be seen from the previous calculations that the accuracy of an
electronic analogue computer is dependent on the quality of its operational
amplifiers and the accuracy of the input and feedback component values.
The low output impedance of the amplifiers enables several other amplifier
configurations to be connected to the output without affecting the opera-
tional characteristics of the device.

+Vs

Fig. 6. Dead zone characteristics.

Fig. 7. Voltage limiter.

More sophisticated networks may be connected to the input and used as
feedback components on the amplifiers (to provide more complicated
transfer functions) and non-linear functions may be generated by the
application of non-linear components to the input or feedback circuits.
An example of a non-linear component which may be used in this way is
a diode. This is frequently used for the generation of dead zones or voltage
limiters as shown in Figs. 6 and 7.

The resistor chains producing the “break point’’ voltages for the non-
linear characteristics shown in Figs. 6 and 7 are frequently produced by
employing potentiometers built in to the computer, the diodes being
connected to the wipers of the potentiometers.

In order that a problem may be set up on an analogue computer it is
necessary that the relationships governing the behaviour of the system to
be investigated can be expressed mathematically; or alternatively, a
block diagram of the system can be drawn representing the system as a
number of simple linear or non-linear functional blocks, which may then
be translated into an equivalent arrangement expressible in the form of
simple transfer functions of the types obtainable with analogue amplifier
configurations. An example of a block diagram for part of a hydraulic-
mechanical servo system is shown in Fig. 8; and Fig. 9 shows the analogue
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computer diggram for simulation of the same system. All of the amplifier
output voltages in the simulation are representative of a particular
physical quantity existing in the real system, for example, the output
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voltage of amplifier 3 in Fig. 9 represents motor shaft velocity and the
voltage of amplifier 9 represents torque available to accelerate the load.
The question then arises as to how much velocity, torque ete. is represented
by a particular value of voltage at these points. The scale factors to be
applied at the various points are easily calculated where purely linear
systems are to be simulated since all the quantities will have the same
relationships with each other irrespective of the input signal levels applied.

This is not the case where non-linear functions are included in the model;
then a scale factor must be allocated to one of these functions first, all
other scale factors being determined from that for the chosen non-linearity.
In the example in Fig. 9 the transmission dead zone was scaled so that 1
volt was equivalent to 1 minute of arc. A typical linear operating range
of output voltage for analogue computer amplifiers is + 100 volts, and care
must be taken to ensure that no amplifier output will saturate during the
simulation. In some cases therefore, considerable juggling of scale factors
and amplifier gains and time constants is necessary to produce a model
which works satisfactorily over a wide dynamic range.

The interconnections between inputs and outputs of the amplifier
blocks comprising the model are normally made by inserting wire links on
some type of patch panel. In some computer systems a number of detach-
able patch panels is provided so that several different models may be
constructed and interchanged on the computer with comparative ease. In
this type of machine the operational components for example, potentio-
meters, diodes and close-tolerance resistors and eapacitors are built in to
the machine and it is necessary to re-set potentiometers when inter-
changing patch panels. To maintain accuracy, provision is made to set up
the values of the potentiometer ratios with the wiper connected to any
input and loading resistors used in the model so that loading effects are
taken into account. It is usual for the independent variable in an analogue
computer model to be real time, but a problem may be arranged so that
the computer works in scaled time, for example, time constants in the
model may be made, say, 1,000 times larger than reality so that one second
on the analogue computer compares with one millisecond on the real
system. This facility is useful when a model is to be made of a fast system
which may possess components having wider bandwidths than the amplifier
in the analogue computer.

Inputs to the model may be injected directly from a waveform generator
and may take the form of sine-waves, square-waves or ramps. Outputs may
be monitored on an oscilloscope or some form of chart recorder. If required
a transfer function analyser may be directly connected to the model to
obtain the gain and phase response of any desired part of the arrangement,

Mention hasbeen madeof two non-linear functions which may be produced
with the aid of suitable input or feedback components. In addition special
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auxiliary units may be used in conjunction with the operational amplifier
to obtain other non-linear functions; examples of these are analogue
multipliers, sine/cosine resolvers and diode function-generators; the latter
using biassed diodes to switch in different input and feedback resistor
values to vary the overall gain of the arrangement according to different
input or output voltages. In this way a non-linear input/output characteris-
tic is obtained by constructing it with a number of straight line approxima-
tions.

Analogue computers vary in size from small portable units, with as few
as five operational amplifiers, which are frequently used for educational
purposes, to large installations containing many hundreds of amplifiers
and occupying four or five free standing cabinets.

Comparisons Between Digital and Analogue Methods of Simulation

First of all it is appropriate to discuss the versatility of the main types
of computer. The analogue computer is a rather specialised piece of
equipment which has only a low adaptability compared with the digital
computer. This is not to say that the analogue computer is not useful, it
is often ideal for simulating continuous dynamic systems in which accuracy
plays a small part, but this is only a very restricted field of the realm of
the digital computer. The digital computer can in principle solve any
problem that the analogue computer can handle, though sometimes at
greater direct cost. Digital computers are however extremely versatile. In
1936 Alan Turing showed that there exists an axiomatic finite-state
machine which can in principle perform any given algorithmic procedure.
He also demonstrated the mathematical existence of a finite-state automa-
ton which could simulate the behaviour of any other particular finite-state
automaton.® On the basis of these theorems one might be tempted to
think that the digital computer can in principle solve any problem. This
is not the case, and Turing also showed that it is impossible to construct
a digital automaton that could determine infallibly whether another
digital automaton would ever complete its execution of an arbitrary
algorithm.

The versatile algorithmic ability of the digital computer has made it
increasingly indispensable to business operations during the past 25 years
and it has now become relatively easy to obtain access via a terminal, sq
that, providing the computer system is programmed to work with one of
the high level simulation languages, no additional computer hardware is
needed to produce a simulation of any type of system that the user wishes

* It is the existence of this theorem which allows FORTRAN, ALGOL and other computer
languages to be implemented on digital computers and which makes digital computers such
powerful simulators.
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to investigate.,At is also possible (within the restrictions imposed by the
computer streaming system) for a number of users to work with a large
number of complicated simulations simultaneously. The digital computer
does not simulate in real time and therefore it is necessary to re-enter the
program for each set of parameter changes in the model, in order to
determine their effects. This may be rather expensive if the model is
complicated and consumes a large amount of computer time, and for this
reason it is necessary to exercise care and selectivity in the system varia-
tions investigated wherever this problem oceurs.

Since all variables in the digital simulation are stored as numbers which
represent the instantaneous state of the system at a point in time, there
are no problems associated with unintentional saturation or limiting as
may occur during the running of an analogue simulation. Output data is
obtained as a table of dependent variables displayed at selected points of
the independent variable. It is then often possible to examine the output
variables with the aid of an interactive video display, and analyse and
plot interesting results as desired from the display.

Digital computer simulations are isolated from the external environment
and numerical integration methods, although basically approximations,
will not suffer from the drift problems occurring in analogue computer
mtegrators. Values of the variables occurring in the simulations may be
stored indefinitely within the computer and conditions occurring at any
instantaneous value of the independent variable may be precisely repeated
at a later date if required.

A digital computer used within the context of this article cannot be
interfaced with actual hardware although certain computers which attempt
to combine the advantages of both analogue and digital systems may be
interfaced via D—A and A—D converters, with either hardware or other
analogue computer amplifiers. In this case the overall system is described
as hybrid.

It is necessary to be able to describe the performance of any particular
component within the digital simulation in the form of a mathematical
or physical law although in some cases, if a direct law is not available, it
is possible to make the computer interpolate over a discretely measured
characteristic.

Analogue computers need a large number of expensive operational
amplifiers to enable complex simulations to be investigated, and for*this
reason unless continuous use can be made of a large analogue computer
system it may not be an economie proposition: the technique of employ-
ing detachable patch panels to enable more than one simulation to be set
up and interchanged with others quickly, may be advantageous in certain
circumstances, but the analogue computer cannot compete with the digital
system in terms of simultaneous usage. The analogue computer works in
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real time or transf@rmed time and the effect of changing any parameter
may be immediately observed; there is also no cost penalty involved in
carrying out investigations with a large number of different system con-
stants where this is desired. The independent variable is always time
although it is possible to- use another quantity providing it may be
equated to time for the purposes of the simulation.

Since all independent variables in the electronic analogue computer are
represented by voltages, care must be taken, as previously mentioned, to
ensure that the maximum voltage that an operational amplifier can produce
within its linear range is not exceeded during the simulation period. Any
output may be continuously monitored and output waveforms displayed
on a storage oscilloscope or similar directly-connected recording device.

Analogue computers are not always isolated from the external environ-
ment and the electronic integrators will be sensitive to temperature changes
causing varying drift rates and therefore errors. Electronic integrators will
store their output values for only a limited time before capacitor leakage
current causes significant errors. It is therefore difficult to repeat precisely
a particular set of conditions at a later date. In a large number of applica-
tions however, the repeatability accuracy will be sufficient for the problem
under consideration.

An analogue computer may be interfaced directly with actual system
hardware providing that only electrical signals cross the interface. It may
also be interfaced with a device whose internal characteristics are not
fully defined, subject to the same conditions, with regard to signals
crossing the interface,

An Example of an Electronic Analogue Simulation

This example considers the construction of an electronic analogue
model used in simulating the performance of a proposed servo control
system for pointing a radar tracking antenna. The simulation considered
here is purely that of the hydraulic drive, the antenna and its mounting.

An analogue model was chosen for the following reasons:

(i) Tt would be possible to directly interface the analogue model with
the hardware used to control the real system if required—with the
additions of a model of the swash plate control loop and some
device giving an electrical feedback of antenna position or velocity.

(ii) The problem was principally concerned with optimising the
frequency response of the proposed servo system. This is easily
carried out on an analogue simulation by connecting a transfer
function analyser to obtain a direct readout of gain and phase
shift at each input frequency chosen.

(i) A large number of variations of servo loop compensation terms
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could by tested in the minimum amount of time since the effects of
changes could be immediately observed.

The first stage in producing the model was to construct the block
diagram shown in Fig. 8 using the available information as to the values
of the constants listed in Table 1. The block diagram was produced by

TasrLe 1

Constants for system block diagram of Fig. 8

Symbol Meaning Value and Units
B fluid bulk modulus 2-45 X105 lbs/in.?
V fluid volume 6-25 in.3
" displacement constant 0-7 in.3/radian.

J rotor inertia 0-001 1b.ft sec.?

Fg viscous damping 0-027 Ib.ft/rad/sec.
Qi input oil flow in.?/sec.

Q. leakage flow in.%/sec.

Qo compressibility flow in.2/sec.

Qn displacement flow in.?/sec.

N gear ratio 59

K. transmission compliance  2-18 x 108 Ib.ft/rad.
Jq antenna inertia 167 lb. ft sec.?

F, viscous drag 310 Ib.ft/rad/sec.
T Mount inertia 5,280 1b.ft sec.?

F, mount damping 34,400 1b.ft/rad/sec.
ko mount compliance 35 % 10° 1b.ft/rad.

Transmission dead zone — + 1 minute of are.
Final bearing coulomb friction — =+ 150 Ib.ft.
p denotes the Laplace operator.,

considering the basic laws of physics and mechanics applied to each part
of the arrangement Care must be taken to ensure the authenticity of the
block diagram since any errors made at this stage will be carried through
the whole exercise and give rise to false information in the results obtained.

The next stage was to construct an analogue circuit diagram (Fig. 9)
based on the arrangement of the block diagram. If comparison is made
between the two diagrams of Figs. 8 and 9 the similarities in the arrange-
ments should be immediately obvious. At each stage where a physical
integration occurs (for example, the application of a torque to a mass,with
inertia will give rise to acceleration which when integrated gives a velocity)
the analogue model diagram contains an electronic integrator. Each closed
loop in the model corresponds to a closed loop in the original block diagram.

The transfer function of each loop in the electronic analogue model is
designed to have the same transfer function as the corresponding loop in
the original block diagram. For example, consider the reaction torque
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feedback loop in tf#e block diagram, ignoring the transmission deadzone,
this has the transfer function:

Ko/ N2p {1 H{1[1 + (T [Fe)p]} = {23,200/p}{1/[1+(0.001/0.027)p]}
The electronic analogue loep has the transfer function:

{1000/p}{0-7 x 10 x 0-895/0-27 H{1/[1 + (0-01/0-27)p]},

= {23,200/p }{1/[1+(0-01/0-27)p]}

The scaling at each point in the model is based on that selected for the
transmission dead zone. This was 1 volt = 1 minute of arc.
The transmission compliance is

2-18 x 106 Ib.ft/rad.
or

635 1b.ft/minute of arc

1 Volt at (A) will produce 7 volts at (B) a torque analogue point in the
simulation, i.e.
7 volts = 635 lb.ft.
or
1 volt = 90-8 lb.ft.

Since the coulomb friction was taken as + 150 lb.ft, then the setting of
the potentiometers at (B) will be that which gives a dead zone of 150/90-8
volts = 1-65 volts, i.e.

potentiometers set to 0.0165 per unit.

The scaling of the output velocity at (C) will be obtained by considering
the value of the viscous drag term, that is 310 Ib.ft/rad/sec. 1-65 volts at
(C) results from 1-65 volts appearing on the right hand side of the coulomb
friction simulation which represents a useful torque of 150 lb.ft.

Therefore at (C) 1-65 volts = 150/310 rads/sec.
= 0-485 rads/sec.

At (C) 1 volt = 0-293 rads/sec.
The scaling at every other point may be calculated in a similar manner.

Example of Digital Simulation
The following set of differential equations is associated with a spacecraft
re-entry problem.
V' =9-295 cos a—32-2 sin y .
—0-00056022 {0-129+0-0151632 (0-965+5-1 «)2}V*
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vy =929 g «—32-2 cos ¥+ 0-00056022 (0-9654+5-1 w) V2
Y = —0-00009421 (0-215y + 0-44 o — 0-026) V2

¢ =y

x =60—y

with the initial conditions:
V =200,y = —0:0204, ¥y = 0, and § = 0-0525 at { = 0.

The derivation of these equations which represent the physical laws
governing re-entry need not concern us. A simulation of this particular
re-entry would be intractable by electronic analogue computer solely
because of their inherently low absolute accuracy, caused by noise and
other imperfections. This would cause severe problems in the calculation
of « say, which is the difference of two small numbers. On the other hand
there are no real problems for the digital simulator in this case.

A complete problem definition may be written down directly in the
SPADE language (see Appendix 1) as follows:

Y1l = 200

Y3 = —0-0204
Y4 = 0-0525
C5 =9-295
C6 =322

D1 = COS(X6)*C5— SIN(Y2)*(6 — X9%(0-129 + 0-051632* X 7%X7)

D2 = (SIN(X6)*(5—COS(Y2)*C6 + X9*X7)/Y1

D3 = —0-00009421¥X8%(0-215¥Y3 — 0-026 + 0-44*X6)
D4 = Y3

X6 = Y4-Y2

X7 = 0-065+5-1¥X6

X8 = YI*Y1

X9 = 0-00056022*X§

*®

TTLE RE-ENTRY PROBLEM
INTG KMVR

TIME TMAX = 30, DELT = 0-1

PRNT Y1, Y2, Y3, Y4
*

where: ,
D1 =V :
D2 =4
D3 =y
Dd =0

Xb=0—-vy=q«
The program prints the date, tilfle, and a copy of the input statements,
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and then tabulategathe values of model time and the output variables,
with a title at the head of each page, see Table 2. The output variables may
also be plotted with the aid of the carcomp plotter (Figs. 10 and 11).

00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
00000091
00000092
00000093
00000094
00000100
00000110
00000120
00000130
00000140
00000150

4

% 104

0:24

25000

016

0-08 i

o000

Y1 22000

=008 1

=0-16

190-00

—0-24 4

000  4.00 §00 12:00 1600 2000 2400 2800 3200
TIME

Fig. 10. Re-entry problem Y1 and ¥ 3.

TABRLE 2

SPADE ANALOGUE SIMULATION PROGRAM
DATE: 29/08/72 TIME: 16/08/06

***PROBLEM INPUT STATEMENTS***

Y1l = 200

Y3 = —0-0204

Y4 = 0:0525

Ch = 9-295

C6 = 32-2

D1 = COS(X6)*05—SIN(Y2)*C6 — X9*(0-12¢+ 0-051632*X7+X7)

D2 = (SIN(X6)*C5— COS(Y2)*06 + X9*X7)/Y 1

D3 = 0:00009421*X 8*(0-215*Y3 — 0-026 + 0-44*X 6)

D4 = Y3

X6 =Y4-Y2 : &
X7 = 0-965-+5-1*X6 .
X8 = YI*Y1

X9 = 0-00056022*X8

*

TTLE RE-ENTRY PROBLEM
INTG KMVR

TIME TMAX = 30, DELT = 0-1
PRNT Y1, Y2, Y3, Y4 .
*
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RE-ENTRY PROBLEM
TIME RS Y2 Y3 Y4

0-0000E 00 2-0000D 02 0-0000D 00 —2-0400D—02 5-2500D — 02
1-0000E — 01 2:0047D 02 —2:0078D—038 —1-7762D—02 5-0594D — 02
2-0000E — 01 2.0093D 02 —3-9336D—03 —1-5350D—02 4.8940D — 02
3-0000E — 01 2:0141D 02 —5:7688D—03 —1-3173D—02 4.7516D—02
4-0000E — 01 2:0188D 02 —~7-5060D—03 —1-1233D—02 4.6298D—02
5-0000E — 01 2-0236D 02 —9:1360D—03 —9.5297D—03 4.5261D— 02
6-0000E — 01 2-0284D 02 —1:0658D—02 —8-0560D—03 4:4384D—02
7-0000E —01 2-0332D 02 —1:2067D—02 —6-8016D—03 4-3643D—02
8-0000E — 01 2:0380D 02 —1:3364D—02 —5-7532D—03 4-:3017D —02
9-0000E — 01 2-0429D 02 —1-4548D—02 —4-89046D—03 4.2486D —02
1:0000E 00 2:0477D (2 —1:5621D—02 —4-2078D—03 4.2032D—02
1-1000E 00 2-0525D 02 —1-6586D—02 —3-6736D—03 4:1639D—02
1-2000E 00 2-0573D 02 —1-7446D—02 —3-2718D—03 4-1293D—02
1-3000E 00 2-0622D 02 —1-8205D—-02 —2.9823D—03 4-0981D—02
and so on.

0-32 1 Y4

Y2
024 4
b
Q-1 4
o

0-08 4

0-00 4

008 T T T T N

000 400 8-00 12-00 1600 2000 2400 28-00 32-0

Concluding Remarks

TIME

Fig. 11. Re-entry problem Y2 and Y 4.

It has been demonstrated that both digital and analogue simulations
have certain advantages over each other in certain respects. However the
versatility of the digital computer has made it increasingly common and
accessible, and it is basically for this reason that digital simulation is
often the more cost effective of the alternatives.
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i

APPENDIX 1

THE SPADE SIMULATION PROGRAM

SPADE is a program which simulates a continuous system by evaluating
the time response for a given set of initial conditions and inputs.

sPADE simulation can be applied to a wide variety of problems. Typical
examples are, (i) in control engineering, a study of the effectiveness of a
control system, (ii) in applied mathematics or mechanical engineering, a
solution of the response of a system or model for which the equations of
motion can be written down but not solved in closed form, or (iii) in
mathematics, the solution of the initial value problem for a set of ordinary
differential equations. SPADE can slso be used to evaluate the transient
response of an electrical network after reduction of the problem to the
equivalent differential equations.

The spADE input language enables data to be prepared directly from
either a block diagram or the differential equations. The system is repre-
sented by a set of structure statements (similar to FORTRAN assignment
statements) which specify the functional blocks and their interconnections
as well as the initial conditions.

Provision is made for delay and hysteresis and such analogue devices as.
integrators and limiters together with the usual FORTRAN functions in-
cluding sine, cosine, exponential and absolute value; and additional
spaDE devices such as random number generators and arbitrary non-linear
functions are also available. Structure statements are built up using these
functions and sPADE variables and operators in a free format; the state-
ments may be written in any order (with the exception of certain initial
conditions) since the program sorts them into a logically correct sequence
before execution.

SPADE control statements specify the time step, the total run time and
which of the variables are to be printed, as well as various other quantities.
The values of the output variables are tabulated with the current value of
time at each time step, and separate programs are available which can
process this output information and (i) plot selected variables on the
cALcoMP graph plotter in a format specified by the user, or (ii) transfer
selected variables via a disc to the interactive displays of the Marconi
Myriad computer for processing by mipas (Myriad Interactive Data
Analysis System).

spADE provides a range of integration procedures, from simple rect-
angular or trapezoidal integration to complex predictor-corrector methods
with automatic selection of order and time step to meet a specified error
criterion. The variable step Kutta-Merson method is the most generally
useful but in some cases a simpler or more complicated method gives
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better results. A special method suitable for stiff systems is also available.

The Spade Input Language

The input statements required by the SPADE program are written in two
sections, each terminated by a line (card) containing a single asterisk. The
first section contains the structure of the system to be simulated and the
second section contains the control statements to specify parameters for
the run.

Structure Statements

The sPADE structure statements are a set of assignments which when
executed in the correct order calculate the derivatives of the dependent
variables with respect to the independent variable for given values of the
dependent and independent variables.

The statements are built up from sPADE operands, operators and
functions, as listed below.

Spade Operands

Dependent variables are designated by Yn.t

Assignments to these variables are taken as initial values, and evaluated
once only, before commencement of the run. Any subset of these variables
may be used and any variable to which an initial value is not assigned is
initialised to zero.

Derivatives of the dependent variables are designated by Dn.

These are the derivatives of the corresponding Y variables with respect
to the independent variable. (D27 = (d/dt)Y27). For each Y used the
corresponding D must be assigned.

The independent variable is designated by T or TIME.

Auxiliory variables are designated by Xun.

These variables are used to simplify the coding, avoid the repetition of
sub-expressions and also to allow the values of sub-expressions to be
available as output.

Assigned constants are designated by Cn.

These are calculated once only and then used in other expressions. For
example, if the value of 7 is required the function arc-tangent (ATN) can
be used, for example C5 — 4*ATN(1). Constant assignment expressions
and expressions assigning initial values to Y variables may only contain
constants and those assigned constants which were assigned earlier in the
data. This is because constant assignments are not sorted before execution.

T n is & positive integer.
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For constants axy valid FORTRAN number may be used provided that it
contains no internal spaces.

Spade Operators

The following operators shown in Table 3 may be used; alternatives to
the conventional symbols for “or”, “and” and “not” are given because
these symbols cannot be entered from a teletype.

TABLE 3
(  left parenthesis ~1 not
)  right parenthesis ? not
»  comma > greater than
:  equivalent < less than
4 implies + plus
= equal — minus
| or *  times
(@ or [/  divide
/A and % divide with overflow check
& and ! to the power of

Spade Functions

Each spapE function is represented by a three letter code such as SIN,
COS. Most of the usual ForTRAN functions are provided (note that the
name is not the same in cases where the FORTRAN name is longer than three
letters) as well as special functions with application to simulation. The
simple functions are listed in Table 4.

TaBLE 4
SIN sine INT integer part
COS cosine SQT square root
ATN arc-tangent LOG natural logarithm
TAN tangent DBS decibels (20 logi,)
EXP exponential TNH hyperbolic tangent
ABS absolute value SGN sign (—1, 0, +1)

The mathematical definitions of the special spApE functions are givén
below :

Limiter (two parameters)
y=a x<a;

y = LIM (x, a, b): Yy =a,a<x<b;
y=b,x>b.




156

Limiter (one pajmmeter)

y = LM1 (=, a):

Dead zone (two parameters)

y = DZN (x, a, b):

Dead zone (one parameter)
y = D71 (z, a):
Slope (Acceleration) Limiter

y = SLL (z, a):

Delay

y = DLY (x, a):

Memory
y = OLD (x):

Re-settable flip-flop

y = RST (a, b, ¢):

Step Input
y = STP (a):

Ramp Inpul
y = RMP (a):
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Y= —a,r<—a; 4

o . E 45°
Y= x,—ﬂ';SéESa, :
Yy =a,r>a

¥y =x—a,xr<a; é
y =0, a<z<b; oA
y=xz-b,x>b. )

Y
y=z+a, &< —a; i, f s
y =0, —a<z<a; & ot

y=x—a,zr>a.

z = last output, £, = last time, p = a(t—1,);
Y =2—p,x<z—p;

Yy =2, 2—p<xr<z+p;

Yy=z+p,x>2+p.

y=0,t<a;ylt) = 2(t—a), {=a.

y = last value of «.

z = last output;

y =0,a>0;
y=18<0b>0;
y=20a<0,6<0,¢>0,z=1;
y=1,a<0,6<0,¢>0,2 = 0;
y=0a<0,0<0,¢<0,2z = 0;
y=1a8<0,b6<0,¢<0,2 =
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Pulse Inpui A
y = PLS (a, b): y=1a<ig<b; y
y = 0 otherwise. ‘
a b
Hysleresis .
z = last output; ¢ )
y = HYS (2, a, b): Yy =2x—a,x<z+a; Gt
y=x-b,x>2+b; I x
Yy ==z 2+a<x<z+b. i
Function Switch
y=IFF(ﬂ’,‘,a,b,C)Z y=a,x<0;y=bjx=0;y=c,x>0.
Input Switch
y = SWT (z, a, b): y=a,x<0;y=>02>0.
o Are Tangent with two Arguments
y = AT2 (2, x): y = arctan (x,/x,).
Quantizer

y = QNT (2. a):

Noise Generator with Normal Distribution
y = GSS (a, b): . o)
Normal distribution of variable y with mean a and

standard deviation b. .

a-b a a+4+b
Noise Generator with Uniform Distribution
y = RAN (2, b): pir)
Uniform distribution of variable
y between a and b. ‘ﬁ[:,],L-y
Mazimum
y = MAX (%, %y, #3, . . . %,): ¥ = largest argument, » is arbitrary..
Minimum
y = MIN (2, &y, @3, . .. 2,): y = smallest argument, = is arbitrary.

Linear Interpolation on Arbitrary Set of Date with Index n
y = AFN (z, n).
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The data for t}‘rg function are given in the form:

An = .Ct'l, yl’ .’33‘2, yz, xg, ya ..... Sl’,‘k, y_[c

The z and y values are the data points which define the function arranged
in order of increasing x. Continuation lines are indicated by a comma
after the last number on the preceding card.

Example: 11 :\
Al =0,0,1,0,2,1,3,2,4,0,50 : x

2 4

Aitken Interpolation of Order m on Arbitrary Set of Data with Index n
y = GFN (z, n, m)

The data are presented in the same form as for AFN (z, n) |,
Example: I
G5 =0,0,1,0°5, 2, 075, 3, 0-90, 4, 0-97, 5, 0:99, 6,1 7 7 ¢

X

Some care is required in deciding whether to use linear or higher order
interpolation. Although the higher order method would seem at first to
be more accurate this is only true for smooth curves. Linear interpolation
gives much more reliable results for a function with discontinuities.

Operation Hierarchy

Parentheses are used to specify that the expressions within these are to
be evaluated first, in the same way as normal algebraic or FORTRAN
notation. Where it is not overruled by parentheses the order in which
operations are performed is as follows:

Operation Hierarchy
Function evaluation (SIN, CORS) 1st
Exponentiation (!) 2nd
Multiplication and division (*, /, %) 3rd
Addition and subtraction (+, —) 4th
Comparison of value (>, =, <) Bth
Not (7, %) 6th
And (A, &) 7th
Or (|, @) 8th :
Implies () 9th
Equivalent (:) 10th

Operators with the same hierarchy are performed from left to right,
thus a*bjc is evaluated as (a*b)/c.
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*  APPENDIX 2

FAST FOURIER TRANSFORMS IN NON LINEAR SYSTEM
SIMULATION

The MODSIM program can simulate non-linear systems which can be
described by an equation of the form:

ZDWV() = vi(t)+ K[ H(t—f[v(r)dr,

where Z(D) is a matrix linear differential operator of order =,
H(r) is a matrix of impulse responses of order #,
v and v, are n-dimensional column vectors,
f is an n-dimensional function of an n-vector,
K is a scalar,
and » is an infeger > 0.
This is done by Fourier transforming to:

Z(w)V(w) = Vi(w)+ KH(w)Ff[F 7 V(w)],

where % is the Fourier transform operator.
The Picard iteration:

Vi) = Z7Hw) Vi(w)+Z Hw) KH(w) FIF Vi (0)], (4)
with
Vi(w) = Z7Yw) Vi(w),

is then performed numerically until V,_ _, differs by less than a desired
amount from V. This is achieved by using the Fast Fourier Transform as
an approximation to the Fourier Transform 5 ®), The iteration, equation
(4), will not always converge, however it is always possible to modify the
original equation so that convergence will occur. The above method is a
very fast and useful means of finding the frequency characteristics of a
mildly non-linear system, and hence of simulating such a system.



